
!!!
!
Little Man Computer!!
The Little Man Computer is a conceptual model of a simple CPU, introduced by Dr. Stuart Madnick
of M.I.T. in 1965. Although it seems simplistic, in fact the model captures many important features
of a real CPU and illustrates these in an accessible way.!!
The Little Man Computer!!
The conceit is that inside the CPU is a tiny man that runs around organising data and performing
the calculations. Inside the box of the CPU are:!!

•! 100 numbered mailboxes!
•! A calculator!
•! A 2-digit counter!
•! An in-tray !
•! An out-tray!

!
The mailboxes each have a 2-digit address, so 100 mailboxes is the limit, counting from 00 to 99.
Each mailbox contains a slip of paper with 3 digits on it, and can only ever contain a single slip of
paper at a time.!
The calculator that can only display 3 digits on the screen, and has buttons for numbers 0-9 and +
and - . It also has an LED that lights up when a larger number is subtracted from a smaller number.
This LED is known as the negative flag.!
The 2-digit counter has two buttons: the first button increments the counter by 1, the second
(external) button resets the counter to 00.!
The input and output trays can each contain stack of slips of paper, each of which has 3-digits
on. The user can put slips of paper with 3 digits on in the input tray, to be read when the little man
next looks at his in tray. Likewise the little man can write 3-digit notes and put them in the out tray,
to be read by the user.!

Counter

Mailboxes

Calculator

Little Man

In-tray

Out-tray

School of Engineering
and Computing Sciences

The Fetch-Execute cycle!!
Or what the little man does…!!
1. The little man starts by looking at the counter for number, which is a mailbox number.!
2. He increments the counter, so that next time he comes it will be one larger. !
3. He goes to the mailbox with the number he read on the counter, and reads what is written on

the slip of paper in the mailbox, i.e. 3 digits.!
4. He takes the appropriate action depending on those digits!
5. He then starts again…!!
Steps 1-3 are the fetch: the little man is fetching an instruction. Step 4 is the execute: the little
man does the indicated instruction.!!
The instructions: !
The little man will read a 3-digit message in the mailbox he is sent to, e.g. 5 8 4, which is his
instruction. The first digit of the instruction is the operation: 5. The second and third digits give
another mailbox number: 84. The operation part is also known as an “operation code” or “op
code”, the other two numbers are an address. Op code 5 is load: the little man goes to the
mailbox indicated by the address, copies what is on the slip of paper in the mailbox, then goes to
the calculator and enters that number. E.g. if mailbox 84 contained 1 2 3, then when the little man
reads instruction 584, he goes to mailbox 84, copies down 123, then goes to the calculator and
enters 123.!!
Let’s define some more op codes and give the little man a task.!!
ADD – op code 1
 go to the mailbox address specified, read the 3-digit number at that address, then go to the

calculator and add the number to the number already on the calculator. !
SUBTRACT – op code 2
 go to the mailbox address specified, read the 3-digit number at that address, then go to the

calculator and subtract the number from the number already on the calculator.
 Note: the mailboxes will still contain the same 3-digit messages as before, but the calculator

will have changed. If the subtracted number is larger than the value already in the calculator
(i.e. the subtraction ends with a negative value), then the negative flag is set/activated and
the value in the calculator cannot be trusted to be right. !

STORE – op code 3
 go to the calculator and note the 3-digit number displayed, then go to mailbox address

specified and enter that number on a new slip of paper.
 Note: the calculator will still contain the same 3-digits as before, but the mailbox will have

whatever was there before discarded. !
LOAD – op code 5
 go to the mailbox address specified, read the 3-digit number at that address, then go to the

calculator and enter that number in. !
INPUT/OUTPUT – op code 9
 INPUT or READ op code 9 address 01
 go to the IN tray, read the 3-digit number there, then go to the calculator and enter the

number in.
 Note: The slip of paper in the IN tray with the 3-digits is removed. If there are several slips in

the IN tray, the little man takes the first one that was put there only, the others remain for
future visits.

 OUTPUT or PRINT op code 9 address 02
 go to the calculator, read the 3-digit number there, then go to the OUT tray and leave a slip of

paper with that number on it. !
BREAK – op code 0
 The little man stops and has a rest. !

A program!!
When the Little Man Computer is started, the counter is reset to 00,
and the mailboxes will already contain some values, so the little
man starts by visiting mailbox 00 and executing the instruction
there. What he does after that depends on the instructions!!!
Look at the initial mailbox contents given to the right. What will the
little man do? What does this achieve?!!
• He first gets an input and puts it in the calculator!
• Then he stores that in mailbox 06!
• He gets another input (into the calculator)!
• Then adds the contents of mailbox 06 to the value in the

calculator!
• Next he takes the calculator value and copies it to the output tray!
• Finally (instruction in mailbox 05), he halts.!!
The total effect of this is to take two numbers from input and !
output the addition of those two numbers.!!
Mailbox 06 is used here as a temporary storage for a value, since it is empty and unused by the
program. Why didn’t we use mailbox 05, the first 000 value mailbox?!!
• Although mailbox 05 looks empty, it is in fact the instruction 000, i.e. HALT. If we used mailbox

05 to store the temporary value, then whatever we stored would be read as an instruction once
the little man finished with the instruction in 04. !

• Change the program to have 305 in mailbox 01 and 105 in mailbox 03, then see what happens
(e.g. on inputs 300 and 301).!

• So the LM does not distinguish between data and program instructions! This is central to the
concept of stored program computing.!!!

Exercises!!
Enter values in the mailboxes so that when the Little Man starts (with counter at 00) !
• He takes 3 inputs values and then outputs the sum of all of them!
• He takes two input values, a and b, and outputs the difference, a - b.!
• What happens if you subtract something large from something small? E.g. 350 from 100!

If you subtract something large from something small then the negative flag is activated
and the value outputted is wrong.!

Mailbox Contents

00 901

01 306

02 901

03 106

04 902

05 000

06 000

07 000

08 000

09 000

Mailbox Contents

00 901

01 306

02 901

03 106

04 306

05 901

06 106

07 902

08 000

09 000

Mailbox Contents

00 901

01 306

02 901

03 206

04 902

05 000

06 000

07 000

08 000

09 000

More instructions!!
The instructions so far can be grouped into categories as follows:!!
Data movement:
 LOAD – op code 5
 STORE – op code 3 !
Arithmetic:
 ADD – op code 1
 SUBTRACT – op code 2 !
Input/Output:
 INPUT – op code 901
 OUTPUT – op code 902 !
Machine control:
 BREAK – op code 0 !
To get the Little Man to do more powerful calculations, we need to have more control over the
machine and in particular the flow of the program - i.e. which instructions he does when. We do
this with branch instructions.!!
BRANCH – op code 6
 set the counter to the 2-digits specified in the address.
 Note: The next instruction he reads is the one in the mailbox address specified. !
To have even greater control we allow two more complex branch instructions: conditional branch
instructions.!!
BRANCH on ZERO – op code 7
 go to the calculator and read the 3-digit number. If it is zero, set the counter to the 2-digits

specified in the address, otherwise do nothing. !
BRANCH on POSITIVE – op code 8
 go to the calculator and check the negative flag. If it is not activated, set the counter to the 2-

digits specified in the address, otherwise do nothing. !
Now we can construct simple loops: !

value = INPUT
do while value >=0
 print value
 value --
next
end !!!!!!!!!!!!

Mailbox code Description

00 901 INPUT value
01 902 OUTPUT
02 299 SUBTRACT 1
03 705 BRZ
04 601 BRANCH
05 902 OUTPUT
06 000 STOP
07 000
08 000
09 001 DATA - 1

And we can test conditions. What does this program do?
 !!
• The program takes two inputs and stores them in boxes 11 and

12.!
• It then subtracts.!
• If the subtraction gives something positive, the program

branches to 08, where it loads the first number and outputs it.!
• If the subtraction triggers the negative flag, the program does not

branch, so it loads the second number and outputs it.!
• The effect is to output the larger of the two inputted numbers. !!!!!!!!!!
Exercise!!
Enter values in the mailboxes so that when the Little Man starts (with counter at 00) !
• He takes 2 inputs values, a and b, and then outputs all integers between the two inputs.!
• First assume a < b. Then try and get it to work for inputs either way round.!!

Inputs either way round left as an exercise!!!!
Machine code and assembly language!!
This style of coding is called machine code, since we are programming directly in the code the
Little Man understands. The first step towards making things easier for the programmer is to use
assembly language - human readable mnemonics for the machine code. Since we are now going
to write our code as a list of mnemonics without reference to specific mailboxes, we shall also label
lines of code that we might want to branch to. So each line of our assembly code will have:!
• a label (possibly blank), !
• an operation given as a mnemonic, and !
• an address, given as a label (possibly blank)!

Mailbox Contents

00 901

01 311

02 901

03 312

04 211

05 808

06 512

07 609

08 511

09 902

10 000

Mailbox Contents

00 901

01 314

02 901

03 315

04 514

05 902

06 514

07 116

08 902

09 314

Mailbox Contents

10 215

11 713

12 606

13 000

14 000

15 000

16 001

17 000

18 000

19 000

Here is an example of assembly code for the program to add two numbers and output the result:!!
! IN! !
! STO! A!
! IN!
! ADD!A!
! OUT!
! HLT!
A! DAT! !

Note that each line starts with a label or a tab, then has a mnemonic, then if the interaction needs
an address, has another tab and an address label. We give this text to a special program called a
compiler that will turn it into machine code and fill suitable mailboxes with the result. There is a
compiler in the Little Man Simulator.!

!
Further Exercises!!
1. Give assembly code for your earlier programs, e.g. the one to output all numbers between two

input values.!
2. Create a Little Man Computer program to output the Fibonacci numbers. Look up Fibonacci

numbers online if you are not familiar with them.!
3. Create a Little Man Computer program to output the first ‘n’ Fibonacci numbers. Your program

should take the input n and then output the first n elements of the sequence. I.e. 1, 1, 2, 3, 5…!
4. Create a Little Man Computer program to take two inputs a, b and compute a × b.!
5. Create a Little Man Computer program to an input a and compute a divided by 2. !
6. Create a Little Man Computer program to take two inputs a, b and compute a divided by b.!
7. Create a Little Man Computer program to take inputs until an input of 0 is received, then output

the sum of the inputs.!
8. Create a Little Man Computer program to take inputs until an input of 0 is received, then output

the smallest of the inputs.!
9. Create a Little Man Computer program to take two inputs and output the highest common

factor (look up Euclid's algorithm).!!
These notes are based on the description found in the book: The Architecture of Computer
Hardware and System Software: An Information Technology Approach, 3rd edition, by Irv
Englander.

Mnemonic op code Description

ADD 1xx Add
SUB 2xx Subtract
STO 3xx Store
LDA 5xx Load
BR 6xx Branch
BRZ 7xx Branch on zero
BRP 8xx Branch on positive
IN 901 Input
OUT 902 Output
HLT 000 Halt or Stop
DAT Data storage location

